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ABSTRACT

Cluster development may furnish a powerful device for the calculation
of the expectation values of the observables of a many-fermion system with
respect to dynamically correlated state vectors. The generalized
normalizatiion integral, a generating function for the required expecta-
tion values, is defined, and four of the many possible decompositions
of this function into cluster integrals are explored. Two of these decom-
positions are slight extensions of the conventional ones of Iwamcto and
Yamada and Aviles, Hartogh, and Tolhoek. The other two are product
decompositions, leading to new, '"factor-cluster'" formalisms. A factor-
cluster expansion is applied to the evaluation of the Y} -particle
spatial distribution function.
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1. Introduction

In this paper we shall explore the formal aspects of cluster
expansions as a tool for the systematic evaluation of expectation
values of the observables of a system of 'g identical fermions with
respect to dynamically correlated state vectors. The techniques to
be developed may be useful in the calculation of properties of the
bound states of such finite systems as nuclei and the electronic sub-
systems of atoms and molecules in the fixed nuclei approximation,
and of such infinite systems as quantum fluids (including liquid H33
and nuclear matter) and quantum solids (solid He3).

In treating a many-fermion system one usually starts with some
intelligently chosen independent-particle model and then corrects
this model for its most disconcerting inadequacies. There will in
general be important correlation effects, whose description is by
definition outside the scope of the input independent-particle
model. We shall devote the major portion of this introduction to a
discussion of how correlation effects may be built into the assumed
form for the many particle wave function.

The correlation structure of the exact stationary state wave
function has been investigated by many authors.l_11 Their
discoveries may be conveniently reviewed in terms of the highly

formal expression
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for the exact wave function. Here Q';‘ and Q)& are the usual
fermion creation and annihilation operators associated with a
complete set of single-particle states. The one-particle field

operator (x,) is a linear combination
WO‘:) = 3 (x;

of the annihilation operators (], ', the coefficients P (%)

X R
being the configuration-space representatives of the single-particle
states W . The argument )(: stands for all the coordinates -

space (Y. ), spin (S_" ), and, when appropriate, isospin ( T )y -
1 3

Y z{
1

of the th particle. |O> is the zero-particle state, the vacuum.

The specific ket l§m> = Q;t"‘“‘ Qt'l '0> , a (N-particle) basis
!

T
X

represents the (input) independent-particle approximation tc the

ket of the occupation number representation generated by the Q,

exact N-fermion state of interest. We use YL to denote the
collection of labels m,;mvu'amu , and, to be definite, take
m,<m1‘<... (Wl“ .  The basis {l?&>} of single-particle
kets, or orbitals, n{ay, for example, be chosen according to the
Hartree-Fock scheme, the NX N determinant of a particular set

of N  such orbitals yielding a "self-consistent solution' to the
N-body problem. The ket l?m> corresponding to the wave function

B ~o
?y\_ﬂ(x,"'xn)as given in (1) is supposed to have unit overlap with

'§3> . G'FW) > the correlation operator ,serves to convert
(2%
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of the excitation operators }/‘ in terms of the irreducible cluster

operators & , -and invoking the (essentially obvious) facts that
any two&... 's commute and the product of two @ .'s with overlapping

indices is zero, '&m may readily be cast into the product form
Ay
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\i T As opposed to the aforementioned expansions for @m , (1) with (9)
| ~s

‘ inserted displays a very clean separation of one-body, two-body,

Nn-body, .,. correlation effects. A single correlation factor

operator |t ﬂ.‘% . appears for each of the N}/t(",“ﬂ‘!}]fistinct
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clustering possibilities for particles in M_ orbitals selected frow
. N .
the set aa o there bein - factors in all. Now;

if we want an approximation for ‘p which includes all ccrrelation
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effects involving groups of, say, Y] or less particles, we eimply
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It is interesting to note that a cluster decompositicn law plays
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put all with F)‘v’lequal to zero.
an important role even at this most elemental stage in the development
of a many-body theory.

These formal manipulations, however, bring us no closer to a
solution of the many-body problem since the € 's , the basic
ingredients of the ¥ 's (or U 's) and therefore the basic ingredients
of the 6 's , still remain to be determined, for example ty a
perturbative or variatiomal calculation. Obviously, direct deter-
mination of the Q 's would be highly desi,rab].e\,i)"’3’4
Another form of correlated wave function that we shall comsider

) . . , 12,13
is a generalization of the Jastrow wave function:™’

\va}(x‘.ux") = Q(N) [ qul...x,,) Som(:., cae w"’z:"‘) ]3 (10)

where
N m
Fro by = B T FR g
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We adopt here and henceforth the notation (au)---é(b)l[m-'v Q(P, >)

hs p > for a particular combination of h indices, thesc




selected from the set of indices {Q(,)"- E(P)} . The special case

{Jui ) |tere N ) will be abbreviated to <1..<-s“"j‘k)}‘ In (11)
m
the correlation function f’” (xjui"{kanl’- which one might hope to
[N [U))
determine variationally - describes correlations of Vl particles
which, in the independent-particle approximation, occupy single-
particle states 7Yz' ' . (Observe that in the primitive
14-)"'h71(n) A
function, i.e., the bracketed expression in (10), a 1-1 correspondence
exists between the orbital and particle labels; application of the
antisymmetrizer eradicates this correspondence and restores the
indistinguishability of the particles.) If we choose all "5/t5~~~9b»ﬂ

of the -y -particle correlation functions to be the same symmetric

function of their Y\ .coordinate arguments, (10)-(ll) simplifies to

~
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Upon setting ?v:: =1 ) YLf &, (12) - (14) collapses to the
definition of the well-known Jastrow wave function.

The product form (10) bears a superficial resemblance to the
exact stationary state wave function written in terms of the product
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form for .. . However, it ic really of quite differeni character,
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since, unlike ), which produces only the
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incorporates not cnly irreducible Wy\-body correlatior effects but
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effects of all specifically W\, -body correlations,

also correlation effects involving all larger groupsz of particles,
these being incorporated in terms of products of Y\;body correiation
functions. Thus, as in those cases of the expansion arising when
(3) is inserted into (1) and the expansion (5) of Sinanoélu, there
is, in (10) or (12), no clean separation of correlation effects, but
the mixing, in these latter forms for the wave function, is not
intrinsically of such a nature as to vitiate their use in practical
calculations and may even be beneficial.

Since we are thinking in terms of stationary gtates, we may
regard qPV“ of (1)-(3) or (5)-(7) as the exact wave function for

~

our problem (or, with undetermined ¢ 's, as a trial wave function)

~
and q}\m of (10)-(11), (12)-(l4) as trial wave functions.

N
We remind the reader that any of the above wave functions may

alternatively be viewed as the element YZ} of a basis of

correlated functions which, depending on how the e 's
™ ”‘gc:,"m,cm
S:E's cx C,.'s are chosen, may provide a highly advantageous

starting point for exact description of the N - fermion syctem, a




far more appropriate starting point then the input independent-
1
particle basis, 3,14,15
Now let us turn to the task at hand. Working henceforth entirely

in the configuration space representation, our attention is centered

on integrals like

- N x -
( Y, S '-P ) = n J‘L QJ (%jo0e X)) S([,..M) ‘f(xl...xu) (15)

b=t

and
(‘P ‘k) £ jll dx ]‘-ch .an) ’a' (16)

where S(luo N) is a permutation-symmetric Hermitian operator and
STI' ;.,G‘XL implies integrations over all continuous coordinates
and summations over all discrete ones. (When written as an argument

of an operator, i stands for Y, -iﬁ Zi'. , and the spin and
Ll K L

)

(if appropriate) isospin operators & , ‘T;- .) The methods to be
~ ~

developed for the evaluation of the ratio (15)/(16), the expectation

value

ys
{$y = ‘L%I‘i‘q%)_) (17)

are sufficiently general that ? may be any of the forms we have

considered, in fact, any N-particle wave function. We have dropped
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the !ZZ label, since we shall deal from now cn with a particular
state. (This allows a welcome simplification of the notation as
regards single-particle state labels - we shall be able to write
1(!)“-1("1) in place Ofmj("l"' mﬂ‘“'ﬁ )

In the absence of dynamical correlations (all 6 5 cxcept
possibly the one-particle ones set zero, giving an independent-
particle approximation) the evaluation of (17) is usually trivial.
For example, if we take S to be the ordinary Hamiltonian, a
symmetric sum of one-body operators plus a symmetric sum of two-
body operators, the required expectation value reduces quickly to
a sum of one-body integrals plus a sum of two-body integrals. But
in general it is a practical impossibility to conclude the operations
indicated in (17). Thus one is prompted to express (17) as a sum of
one-body terms, plus a sum of two-body terms, ..., plus a sum of
hl-body terms, in _such way that truncation of the series after a
manageable number of terms involving only calculable (few-bcdy)
integrals, furnishes (hopefully) a useful approximation. Expansions

of this type, called cluster expansions, first saw application in

the classical statistical mechanics of imperfect gases, where they
have long been employed to approximate the partition function.
Two cluster expansions, the one associated with Iwamotc and Yamadal7

. , 18 19
(1Y) and the other with Aviles and Hartogh and Tolhoek (AHT),
have frequently been used in quantum mechanical many-body calculaticns.
In Section 2 the generalized normalization integral - a quantity

from which the required expectation values may be extracted - is
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defined, and decomposed into cluster integrals according tc schemes
closely allied with those of IY and AHT. Then two radically different
("factor-cluster') decompositions, bearing the same relation to the
Van Kampen20 classical cluster development as that borne by the IY
and AHT decompositions to the classical Ursell16 development, are
studied in detail. To conclude Section 2, general formulae for the
expectation value of an operator in terms of the two new sets of
cluster integrals are derived. An application of these formulae to
the evaluation of the Y -particle spatial distribution function is
presented in Section 3. The final section is devoted to a general
comparison of the four formalisms here studied, in the context of
their practical application for the systems of interest.

In the second paper of this series we shift the emphasis from
an investigation of the new factor-cluster formalisms per se to an
exploitation of their properties and their relationships with the
IY and AHT formalisms, with the aim of extending the applicability

of these latter formalisms to finite N .
2. The Cluster Expansions

A symmetric Hermitian operator S(J---M) may in general be
resolved into a symmetric sum of one-body operators, plus a symmetric
sum of two-body operators, ... plus a symmetric sum of N-body

operators:

N

Steeny =24 Sicrean) (18)

=1
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with

-
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-
where $,C4r+e-fy, ) operates in the subspace of the parti:clies labeled
4 P P F
1ﬁ°"°3'f" There are in general many possible ways of vesclving
S;(L-.Ad_ There will always be one particulsr resciutien in which

‘none of the Sr(j,”...j( may be further decomposed into the

p)
sum of terms which individually depend cn a proper subset cof
article labels . Such a resolution will be said
P ° 3*")"‘)3(”)
to be irreducible.
For example, the Hamiltonian of a systewm of N identical,

non-.2lativistic particles of mass M s located in ar extetrnal

field \6: and interacting via two-body potentials al¢” ')
) 7

\ N _ﬁﬂn VQ. N . . .
ey < e o + V( ) ? ,JE(I[ ) A )
Hoew .2,‘ i ‘Z:, ' 'sé&%’jéw J7 9

may, as suggested above, be irreducibly resclved by taking

- - 2
S i) = %ﬁv;bJ'Vt:) )

-~~~
L]
p—

-

51(73) T V),

in

Snkj(l)"'(j(n)) = 0 ) 3 n i Mo
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As a second illustration, consider the operator

(w) W
(r...r ’."."---Y' = 2" § "n"g(pwrf ?}(22)
)
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Over leee

- whose expectation value yields the Yl -particle spatial

distribution function
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In this case the obvious choice of &, ‘s is

F
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Again the resolution we have chosen is irreducible.
Following the lead of Iwamoto and Yamadal7 we define the

(generalized) normalization integral



ia
= (24 (P* A G ¢y pd)
Im(d) - gl;' XL ) xio..,xn) e {pm(_x‘aaux” )
~ ~F ap

pd * 2
= jgl beg’m [L +o S ¢ %‘r 52,+_'“J¢y@

from which the required expectation value may be obtained by means

of the following differentiation:

8

(S) - j%’ Im(oﬂ)

I‘Xf ) \

- (26)
z é,ﬁm.Imﬁx» . L=o
dd At
£30 <o
Our goal ig to calculate Im(&) or, alternatively, fm Im(cﬁ) by
the technique of cluster expansion. Although we are presentiy
interested only in the expectation value of the operator S(nm)w)}
it might be pointed out that a knowledge of Im(,d&)) yields a
Rep

wealth of additional informaticn. In particular., the wvariance of
S(..“N) may be computed as the second derivative of ’(’V? Im(x)

]
evaluated at & = 0O 521 Finally, let us ncte that the tasic ides

embodied in (25) and (26) has recently been extended by Clirk andg

13 ] . ) : ; ;
Westhaus to the evaluation of non-diagcral matrix elements in the
representation defined by a set of dynamically corvelated basis
functions.,

Our procedures for calculating Im(cg) begin with the
Mney

recognition that, given q)m and S(EN) , a ser of related

A
functions and operators may be defined for W-particle subspaccs.,
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ML N, of the N-particle Hilbert space. First, we consider a
subset mém"' m;m) of YVYL and construct an Y1_-particie
"waye-function"‘ In particular, according =s form (1) with (3)
inserted, form (5), form (10}, or form (12) has been thosen for @;@,we define

the \-particle "wave function" respectively. as

[}

(%4, ey = 1L
.q/ 33!1 :’l:m) : Vol Col W(x. m)y*’ Lﬂ(xjw { L *ﬁ’m ff’))}

(! f pesw + cae
{f)‘?' pn{j’f’) ch, )} 2; ”"):Ta"‘z)m Q J“’“ szy{§>

\(_17c.,

‘ (Xgen ==+ X [ (Xyer + Tf ¢ +
Lﬂm A m’tl‘) Qf‘n.) = S"mf?))) P% H"FSD uﬁ i1 U (xj",,)

&

b ow
3, C@‘xam,)U(x, .,.L UM(»""' don1) ]
r&z -ge er J(Pz:“;;;s‘q’ Jcn : (ﬂh )

f ((’m' o cps) (X
Ly( 7(.";‘0)(3(",) s (M)[ {(((ﬂ I(’ny(l) j(\13> f(‘r: “H(P J(;;% )]

Y
J .

ij 7ty
77¢
oY
(’1(‘) % oo ()
ipg(lg ?ﬁéj:;(a .)
(’JCXJ”, x1<m) - {5( L(m !{P))} I} ; :
J(” J("" 0 Q(pﬂjm ) > U——ﬂ n ; .
X
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In the second and third definitiocns Q('n.) is the antisymmetrizer

for the appropriate set of Y_ coordinate labels, normalized such
that (a(n) )2' :J’n_,'l C{(h) . Although we have written the

as functions of the coordinates }{ng caey X\JM)»

W'Mac‘\h.. mg“(“’
they can, of course, be written in terms of any set of YL coordinates -
i.e., there is no necessary correspondence between the place indices

i a
of the selected orbitals 'thm , WIJ('L) R ,,,)thm) nd the
coordinate labels (see Eq. (29)). Henceforth, the orbital indices
W?gn))‘°’) *n,‘k‘ will, for brevity, be written simply asa(”r*{j(nd ;
mor eover, the same symbol ‘1[/( ‘jf“) will denote, as appropridte.

1)

any of the four forms of the YL -particle '"wave function'. Next,

from the elements into which S (love N) is resolved via (18) and

(19), we construct the Y) -particle operator

v‘ ad
Streemy = 24 by Sp ey Lpy) - (28)
f):l <£(“..e(m'(“w)

Then we define, in terms of a particular Y -particle wave function

and YL-particle operator a subnormalization integral indexed with
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the same orbital labels as designate the corresponding Y -particle

wave function:

n % &S tlaasm) 7
-(d,?’ - Tr JKB ?(K;o..x“) e * ) qj(‘,..o K ) PY (29)
J(" J‘V\ 1,3\ 3(1"";0&) J(i\"é(‘h)
Counting I'(*z = Im("‘)'il(-() as a particular subnormalization integral,
i _
we see there are a”- L such quantities, each indexed by a particular
subset of orbital labels, jm, o o ‘)j("\] .

Before proceeding to general techniques for the evaluation of I(,()
let us imagine for a moment that all correlations among the particles
have ceased to exist (e.g. all 6 operators vanish) and that all
except the one-body terms in the operator S@«.n)are zero. Under these

conditions we have

*

x ves
9“""?}:)‘ zSc- 95‘(;.) yﬁ"\‘;)

)
~ -n J °
] ¢

j“""jth) e - s : .a :
d dewy b ! 5[ 97:.«,,, ¢ea ?}m 5‘3{3)‘“} jpj(xn\

(LY}

- s e g] + 0ed)

I

o fa(x) + O2) . (30)
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In particular, if the operator g'(') = ho(.) is a one-body
Hamiltonian containing some ad hoc single-particle potential and
{‘P' ! ‘Pt’ ') ‘?N } a set of eigenfunctions of ho , then the
equalities in (30) hold with the addends O(&a') cmitted. Frequently, such
an independent-particle model provides both a convenient image of the
physical system and a framework in which those observables corres-
ponding to single-particle operators may be accurately calculated.
In any event, as long as we are only interested in computing 4 S )
terms O(o(") need never be considered.

We are now prepared to set forth the essential structure and
state the underlying philosophy of a wide class of cluster formalisms
applicable to the evaluation of I (<) . Each of the above

subnormalization integrals or, more generally, some linear

ljm e 'J(n)
combination of those with the given number Y\ of indices, is to be
r~

built up from the IJ‘ 's and a (finite) number of cluster integrals

')

involving anywhere from one- to Y\ -fold integrations. Alternatively,
we say that the subnormalization integral, or the corresponding

linear combination of subnormalization integrals, is decomposed intc
”~
L)

the ], .'s and the cluster integrals. With the I ‘s and the J, ..., 's
J(v) J(‘) J(‘l) J[u)

already defined by (30) and (29) respectively, such a decomposition

equation provides the definition of the last appearing, Y] -body,

cluster integral. Proceeding to Y= N , an expansion for I(,o\) in

terms of the cluster integrals is achieved. We shall see that for

some decompositions (among these the most familiar) it is necessary to

rearrange this primitive cluster expansion for I(o() in order to
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obtain a useful approximation scheme for large N . All of the primitive
cluster expansions to be considered will contain a finite number of

addends for finite N .

Different modes of decomposition of the basic subnormalization
integrals, or appropriate linear combinations of them, lead to
different definitions of the cluster integrals. B¢t an impcrtant
feature of general cluster theory as herein circumscribed will
pervade all the following considerations for finite N : 1o matter
what mode of decomposition is checsen, the explicit elimination of
all the cluster integrals from the decomposition equation for, say,

I. must lead to an identity. In particular, it is the
dw 2 Jiny '
definition of the last cluster integral which ensures that the
(primitive) cluster expansion for‘Ig*) , if completely summed, will
regenerate this normalization integral. This feature is trivially
obvious, but, as we shall see, formally useful.
Later discussions will be facilitated if we adopt a definite

convention for what we shall mean by a term contributing to a cluster

expansion of some quantity. Any individual contributicn to a given

cluster expansion will always be a product of the corresponding
cluster integrals (perhaps with only one such factor), supplemented
by some numerical factor. These cluster integrals may cr may nor be
indexed with single-particle labels. 1In the former case, the term
corrvesponding to the contribution in question will consist of this
contribution, summed over all combinations of the allowed single-

particle labels, the original labels having been replaced by dummies.



In the latter case, the term corresponding to the contribution is
that contribution multiplied by the number of times it occurs in the
expansion. In both cases, if the contribution enters with a minus
sign, that also is to be attached. The given cluster expansion is,
of course, the sum of all such unique terms. The meaning of this
convention will become clearer as we develop concrete examples of
cluster expansions.

In the above we have not specified any essential properties that
the cluster integrals must possess, but have merely regarded them as
the elements of the postulated decomposition - which of course
determines their properties completely. It is not our immediate
concern whether or not a given WY\ -body cluster integral (involving
integrations over W\ sets Xb ) so determined is irreducible in
the sense that this integral can be in turn decomposed into a sum of
products of independent integrals over fewer than Yl sets of
coordinates. Of course, a careful study of the structure of the
cluster integrals, in particular with respect to their possible
reducibility, is vital in analyzing the behavior of the terms in a

13,14,22,23

-

cluster expansion as N grows large
To conclude these very general remarks: Although, strictly
speaking, every cluster expansion is a tautology, the value of a given
cluster formalism, when employed in its main role of generating
approximations for (S> , depends on the wisdom of our decomposition.
We shall always have in mind systems for which irreducible correlations

involving many particles are less important than those involving few.
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Thus we always seek a cluster expansion for {§ > which, perhaps after
suitable rearrangement, will reflect this situatiorn in rapid convergence,
allowing us to approximate {§)»satisfactorily in terms of the first few
cluster integrals, therefore in terms of the first few subnormalization
integrals. Naturaily, the usefulness of a given cluster expansion of
the expectation value of the observable s will depend crucially on the
correlated wave function chosen; in the final analysis the merit of
the approximation schemes suggested by this paper must be tested by
detailed numerical calculations.

We shall now study in detail four modes of defining cluster
integrals. The first is a straightforward extension cf the procedure
adopted by Iwamoto and Yamad’a;17 Initially we approximate Ifd)

y [0 e ’Bl(m)

by the product Trr(aﬂ) and then '"build up" the subncrmalization

It

integral by replac1ng each combination of zero, one, two, ... N factors

in 7T I () with the sum of all possible products of cne-bsdy, two-
13 26)

body, ... Y-body cluster integrals involving, with no repetitions, the

same set of indices as the replaced factors. Beginning with the cne-

indexed quantities, a hierarchy of equations is generated:

~d

Li® Lot X

J(l) Jﬁ) b

Iju)j(g): I‘j('J Ij‘io) *XJ(-: Jen Ij“)x‘f(u X X;’ d@ XJ"’j‘ﬂ.} b,
.3

-3,
= fi
I‘jmjmjcg, ; i J“’ z—'[ }u’i r Iﬂ‘f) # ;x,; p* IXJ(fJ
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(31)
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Introducing the rormalized cluster integrals

XJ(I)"'JU\) = ?}“ﬂ 7—!”' (325
T

we can rewrite these decomposition equations as

A
IJ(U * IJCI)’ [l 4 XJ"’] )

Igtnjm.) i IJ(:J I'J(g.) [ L+ xJ(n 1 xj(a.) 1 xijjcm * xj“)j(ﬂ)]’
.3
. . +
1(7“’1‘1)1(3) J") [1 ' J'F‘ |<§1$3( J‘l” J(‘I) )(J‘f'jcl))?
&Jw xjc‘.ux;cs) 1 x;(;a%Jtmjm * xjta: x‘j“«lju) *

ij *ij(';.) + XJ(NJ(‘L)jBJ] ’ (32

280

I|2 conN = I o 77 I [1. "'Z@ "P *Za (X fxr.z’)f‘“’ K’&onoN]’

where, in general,

N ~
IJ(H“"?LV\) : ;‘;r' I’j(f) Bj‘"‘";‘”) (34
with
e B2 fE L xewsex ]
Byor-oe o 1T Bty apenn”

amohgp 2’3 (33)
fiotors




To the right of 1 in each 8 there stands the sum of all
J(.)u\oyt”)

normalized cluster integrals with indices ccmprising a subset of

{j(.,a.n j(“)}, , plus the sum of all possible completely unlinked

products of these normalized cluster integrals. A completely unlinked

product is one in which no pair of factors has an index in commen.

More generally, an unlinked product of cluster integrals is one in

which at least one factor has no index in common with any other factor.
Oa the other hand if each factor has at least one index in commen
with one or more other factors, the product will be zalled linked.
Now, although termination of the series (33) for B at one-
onoo N
index, two-index, ... M-index, ... terms may lead tc acceptable
approximations for B'Z".Nwhen N is small, the ncn-uniform

asymptotic N dependence of successive truncations indicategs that,
P 2

when N 1is large, some other form for B must be found for

lacooN
approximating I(.() . This non~uniform N dependence results from
' . 13,17,22, :
the presence of the completely unlinked products, ¢ Dropping

terms which are of no consequence in the many-body limit (i.e. the
limit in which N & ©0 while 9 , the number dengity, is held

24 ' .
constant), Iwamoto and Yamadal7 and Wu and Feenberg * have derived an

]

expression for B in which all products of X ‘s which zppear

1QeeeN

are linked. Thus, upon writing

23
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they find in the many-body limit that

GI‘{ b4 E:. X: + (Z“}XfJ 1%"2:(-." )(.. h-xj x;hxj’ll"'“' 3
(375

an expansion which, upon successive truncations, displays a uniform
asymptotic N  dependence. In the second paper of this series, we

shall offer another method of rearranging B to generate such

llo‘laN

an exponential formula, a method which demonstrates, and utilizes,

the (quite general) linked character of GIY . Our procedure,
unlike former ones, is applicable to finite as well as infinite
systems.

By the order of a given term in (37) or in any cluster expansion
based on the IY subnormalization integrals (29) we shall mean the
number of distinct single-particle indices involved in any individual
contribution to that term. This is a classification according to
"number of bodies'" - there will be one-body terms, two-body terms,
three-body terms, ..., or, speaking more loosely, one-body clusters,
two-body clusters, three-body clusters, ... - and is quite different

1
from the ordering prescription of Clark and Westhaus 3 based cn a

"smallness parameter'. In (37) the successive addends Z— X )
[

2‘:‘; )(Do ,-&‘ﬁ)‘kx'd‘xdh-

order, second-order, third-order, ... terms in the sense just defined.

, ... are, respectively, first-

In order to motivate the introduction of a well known alternative
to the cluster formalism just discussed, let us suppose that a

correlated wave function (12) with state-independent correlation
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factors has been selected. Now consider a unitary transformation in

the one-body vector space spanned by the set of single-particle

functions ?n)"";SoN:
U - * 9 ’
Proo — iy = 24 Vs . 0x) he 2] oaey Ny (38)
5 J7d
where

* - * -
Ju .U, = 2y us T 6.,
ki "k "h =3k, :
R ORR R if
P I

Since the replacement ?.. ~» 'f'- ) L ’J---,N , chaages é by at mcst
a phase factor, the expectation value (S > is invariant under this
replacement. On the other hand, as one may readily verify, the IY
expansion for (S) does not possess term by term nor indeed order
by order invariance under the substitution (38). Of ccurse, if

N ~ G
summed to all orders, the expression Tt I;e ry must yield E(*)

2

131
identically and thus lead to expectation values with the above
invariance. But practical application of this cluster expansion
theory demands that (5:" be terminated in low orders, whence the
approximate expectation values lack a very desirable feature of the
exact expectation value}a’14

A cluster expansion which is invariant term by term under such

a unitary transformation of the orbitals has been investigated by

1
Aviles 8 and by Hartogh and Tclhoek}g The quantities which are

decomposed into cluster integrals are certain linear combinations,
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or averages, of the subnormalization integrals defined in (29):

3 T
LR \
°Q' N ot
oQ’- ; NIN=T) HY I:I. )

(39)

L, = nl(n-m)! S,

N£ (ch..a‘",> ;m...;(m 9

n

Ly * T = Ly o

'a... N

These linear combinations are themselves invariant under the
transformation (38) and so in turn will be the cluster integrals
which they define. Having motivated the introduction of these new
subnormalization integrals we may drop our restriction to the wave
function (12). Upon so doing the above statements concerning
invariance may no longer apply; we shall emphasize this fact by
putting the word invariant within quotation marks from now on.

We proceed in analogy with the foregoing development, again
first considering the situation in which no dynamical correlations
exist among the particles and in which we need only be concerned
with the one-body component of S¢,‘.'y\) . Here, in complete

correspondence with (30), we have
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* v .
Jm*jn nl (_PJ"‘W)‘ Z' 1r¢l,¢ S,’m ore 9’((:, égg%,s;(«‘zﬂo(un Cag(m
4;:» Jw) tpjz s rf(‘ﬂ ‘P;(Xu) ‘(‘VD

o

(J; )Y’ -+ O(O('L) ] 15105

where

N N
- | ¥
&L o= L dX Py e (ﬁ(x():alvz . (41)
t
N I
Returning to the realistic situation, we 'build up" Jh by replacing
~ A ()
successive numbers of CQ.,_ factors in Ctﬁ‘) with appropriate sums
of products of cluster integrals. This process may be viewed
alternatively as a decomposition of QZ\". into cluster integrals.
~

From either point of view, of course, with j, s QZh , and

cluster integrals xf‘ (F(\a) having already been defined, it is the

cluster integral m\n which is defined by this decomposition of:‘gho
Beginning the process with VQ' , we write
AL

J—.*%": 3
J’L = ;é"a’ + Q‘E,.x‘ + ‘x}l t x& 3
yQ 1‘3&1% + 34. 2"’“’+3&.’£’f=9€3+33€£ %,

<

N ~+N,§;”='f‘+“. X .

(42)



28

Then, continuing the development in analogy with the decomposition

of [ , we define
J‘“‘”? (ny
g
x T AL (43)
T T@)e

and rewrite the general equation in the above set as

T AN
L, = L) B, (4t

with
. v Yo ¥,
® = {1 + Z CYL 2‘ Plx."'o.-.lf’hbm,f)f"e"r‘} )
" o P oan 7 (b1 )by !
P pirtitions H . b (45)
Sveh that b1 “

P
b3 b“b:P

Once more hoping to approximate £N in terms of the few-body
clustzr integrals, say 3¢, , X, > , and XC, , we discover
v K G ¢
that in the case of large N the series (45) must first be rearrangel
in order to express BN in terms of a series which, for large N ,
is uniform in N . And again the required rearrangement results in

an exponential formula,
s ex
8, P Janr (46)

with 9,“” given, as the many-body limit is approached, by the

"uniform" cluster expansion
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Goaur = MX T ) 4 X (g sEF 53 EETEIEE R
* 31! 3 a

A derivation of (46), together with a generalization of (47) which

includes those terms which must also be accounted for when N is not

large, will be given in the second paper of this series, where the

properties of the '"factor-cluster' expansions introduced below are

wore fully exploited.

By the order of a given term in (47) or in any cluster expansion
based on the AHT subnormalization integrals (39) we shall mean the
follzwiag: in the case of the asymptotically leading terms, simply
the :;-wer of N  that appears explicitly; in the case of terms
dowr from these by ()(944) , the minimum number of sets of particle
coordinates which must be introduced to carry out the integrations
involved. This definition is not as arbitrary as it appears, since
it wi11l be seen to maintain a close correspondence with the "number-
of-bodies" ordering prescription set up for expansions based on the
IY subnormalization integrals. 1In (47) the successive addends
Nx| 5 LNL:CL 5 “LN3332' sy ... are, respectively, first-

! A 2
order, second-order, third-order, ... terms in the sense just
defined, while the asymptotically negligible term L Nxv,%, to be
incorporated later, is of second order,

The necessity of rearranging the series for B':L“Nand @N
has prompted us to seek new 2nd "more natural' modes of decomposition
to replace those of 1Y and AHT, modes which require no rearrangement

to make sense for large N . The two alternative approache:
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ij(g_);

presented here are closely related to a cluster expansion proposed
20 , . , : i
by Van Kampen in the imperfect gas problem. They have the virtue
of immediate applicability to finite as well as infinite many-body
problems. The first, a '"non-invariant" formalism, is based on the
"non-invariant'" subnormalizaticn integrals of 1IY; the second, an
"invariant" formalism, on the "invariant' subnormalization integrals
of AHT.
Instead of constructing the IJ""
"

400

in the product 1Tb"Id‘) as we originally did in (31), we now
]

propose that additional factors - the new cluster integrals -

ﬂ
by replacing the I":,'s

simply he attached to this product according to the following

prescviption:

) il'JY') 4

I

IJm

Jt-; IJ({) YJU)‘ Yj(.’.l). ch-»jcz) 9

]

3 o~ 3 —_—
I;mjc-m;t}) h:u Ijt:)}.["“ Yﬂ‘ﬂ]. 23 &153\?'»1%&]. YJMJLQJC?M

(453

T ad®

I;la.aN =):-‘":, ['IY ] 14,:‘7' Na’]. o rzoaoﬁ

Employing (26) together with the final equation of this set, we

arrive at an extremely simple formula for the expectation value

L d

) d .
{8 Z + 25 XL Yieoreegoms |
1= xz0 M <J"r"j‘"’> YJ(:)""JLM

o




Our general statements concerning cluster theories may be applied to
this new mode of decomposing I(«, . Specifically, the last cluster
integral in (48) is defined in terms of the generalized normalization
integral itself. But, of course, the hope is to approximate {S$)
by terminating the series in (49) after the first few sums, and
thus avoid having to compute the many-indexed \/ 's . The rapidity
with which (49) converges depends ultimately upon the problem at
hand; but that the series does depend uniformly on N in the many-
body limit will become clear in the following paper where the
relationship between this cluster expansion and that of 1Y is
explored.

Implicit definitions of the quotients appearing in (49) may be
obtained immediately upon differentiating the logarithm of‘each

equation in the set (48) with respect to o . Defining

~
e . foed gz I:(‘)
(1) F .
2 Idu) *:o)

d
J = : FIJ"”“;fCM
J(l) OOQJ(n) I ]
ﬂ'(u'";(n) ld 30

and

LY
= IR AKX n
ng'"‘jm -E—J——#Y ) , (51)

r [ERCPTC PPN

we have
b #’y d ‘)
: Z . > + Z Z LER ] 52
J;(n"ujc'\) iz J“) 1%: <!m“9¢u(l‘;"j(m> Loy "V ) cw

“' ')o-’}; N;

31




The key to the inversion of this set of equatioms is the realization

that the substitution for the'zuah{ s of their definitions in terms

(L M

~ s

of the basic quantities J, , and J must transform these equations
ty Qe *“p)

intns identities. Hence we conclude that

) )

Z*Jc«': : de)“ J;(‘

N
7 = I\l A
ﬂj“"“‘ji*) ?',21' t-1 &h%q}um'“ﬁm) J-;m "'9(2)} J n ’/2(

wor unon the insection of these relations into

:Z{ﬁ(n

Chowhipr 1bar=hep) e

P
o~
cne coefficient of each \IL‘,) vanishes, while the coefficient
]

> J’z“"“ﬂ?_x {0“““fczm}c:{kc.s... }’JF)} » is given by
o, 8<F

f 5-g 2
2‘(-1) S-ch‘z = S een tC;_ =
sy teo T A

~4
as required. Note that the ‘Jaci) enter only into the one-indexed
cluster integrals. The results of this new "factor-cluster' formalism

may be succintly stated as follows:

N N
(s =k + 4 2 Z

ta ! nsl ‘j(l)"‘j&hl) 1")'"7(“) ) (49)
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where

Zj‘-?) = Jj‘d) - Jju’) )

(53)

I S
'Z'J"'".JM’ i 2%( k ((m"'&z;ljuuo.j;np Jl(a)"‘f@)}) nz7a.

The quotients

i 7. * - '
j;‘;’ - -‘!!~ch:’) . fp’x.(P!Ec:)S.(;) ?ZS:"!)
Ij "’ ‘o jdﬁ‘ ?j‘:()x', ,(::‘))

and’

3
0

d ¥ *

j - m - szldxb¢h hindd SCI.-. ({1
2ew=Leqp I *
l(u'“!( ) R ?‘ k
Piczo b:cd b Loy feq L-Fﬂn"'llty '
are not susceptible to furt;her reductions and must therefore be
evaluated as the basic ingredients of the expansion.
Let us now consider a factor decomposition alternative to (42).
~

Again t’L“ is "built up" from (tf_l )Yl. by attaching cluster
integrals yP (r&n) - and thus defining yn « in the

following manner:

33



L]}

J”I é?l. 3h Y
L2 "‘Q‘Z“yci'yzs
<L3 :4,-y‘3-'z/2 Y s

(1]

s b

L. @ ()]s

-
[ ]

N C
£, =12 (@[T ")

rormulas completely analcgous to (48) through (53) emerge

we find that

4 o~ n
9?\ = n?n 14 b‘Zl' hc'ngh
«id, in particular,

o

N
Sy = u = NG+ %_thN?M

where we have defined

I

e
1
f
al
R
Py
EaIRS
P4
%\-_.
b
o)
—-—r

(54)

Indeed,

(55)

(56)

(57)
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and

d

3 s 3% Y . (58)
n -

The inversion of (55) parallels that of (52). Here the required

. identity is ensured by taking

Ao

3 =99

- ¥
9, ° 2ZL'(-') ? TR 32) nzil,

Eq. (56) constitutes our newly-proposed "invariant''-factor-cluster

expansion, with successive terms given by (59), The computation of

the 23~1 must be carried out in terms of the basic ingredients, the

"invariant"g' 79)’\ 's of (57).

To keep the terminology and the various relationships straight,

we list the four cluster formalims just analyzed:

1) the conventional one of 1Y, a '"mon-invariant' formalism in
which a sum-of-factors decomposition law is postulated for the IY
subnormalization integrals,

2) the conventional one of AHT, an "invariant" formalism in

. which a sum-of-factors decomposition law is postulated for the AHT
subnormalization integrals,

3) a new '"non-invariant-factor-cluster'" formalism (henceiorth,

35
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the FIY formalism) in which a product decomposition law is postulated
for the 1IY subnormalization integrals, and
4) a new "invariant-factor-cluster' formalism (henceforth, the

FAHT formalism) in which a product decomposition law is postulated

B
L

-

for the AHT subnormalization integrals.

There is one important feature of general cluster expansion
theory thar we have not explicitly pointed out: the arbitrariness
of thz Ywe-nody subnormalization integrals with W< N. Since, in

any couplete cluster expansion of I(*) , the net coefficient of

svery -obnormalization integral except the last one,f

: ""“: I(ﬂ()zsﬂ"’

is sv-ictly zero, the subnormalization integrals with wW{ N are
sutl. -ty at ap &isposal. The choices (29), (39) are only two of

an infinite number of possibilities. One should take advantage of
this arbitrariness in tailoring the cluster formalism to the problem
t> b 50lved. An illuminating example of how this may be done is
provided by the work of Feenberg and his collaborators on liquid

g3 14,23

3. An Application of the New 'Invariant-Cluster"
Formalism
We shall now apply the "invariant-factor-cluster' or FAHT
formalism developed in the preceding section to the evaluation of
the n-particle spatial distribution function (23). The resolution
of the corresponding operator given in (24) leads to the following

expressions for the basic invariants of the expansion:
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;;2:2’219’(...;;» z)?",_,,,z," ) Vlo:’

‘”‘('l) - )] Sz Z ) )
0% "
O’ w > a_)
(60)
2_' %. an’Ym 44 Il S(v- s )1{7“ "‘ )
(2451)! 2 Rapear 134 "'“"“p
(Qc.‘f‘l(j"ﬁ s ‘9 ]27/“
¢ s/ 14
Zy f e Proieen goaeexy)
A ) LR Qe Y b b tm"*lcp bor=kep
‘9 (~'000r' ] -
0, 9¢n,
Thus, in accordance with formulas (56) - (59) the expansion for
ftxj...r takes the form
tn)
€ r.ry = NG + 2 rCu ] (61
b=t &
with
o, n I,
¢
ks, t) TS
Loy 3f SR LGN o8 o, }
N Sz + iz [f. fJxV ul)li} (‘)] ?‘ vl;z zZ, (plg 2,
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o ?‘4Y1‘

X

fwd 1
f’ et (62 cont'd)
{~ ~ ~n

Z - )%‘h I

9 (-1 (ny
%R I

i (- ‘)th ?,. ITI' be Dh(’( XA)FS(Y ’ri’)
h="n (2 A)l(b-n) S‘.# o\x D ‘X'“xh )

In aiviving at the last line of (62) we have interchanged the
integrations and summations which occur in both the numerator and

. vy, .
Juapsonator of the é? s and have defined

= 2‘ LPfx'" b)‘?“‘ o S I (63)

(x’ooo xl hd vam 00
M Lk T Y

Some intuitively satisfying features of this new cluster

expansion deserve special study. First of all, since

S‘Jr'". {ITT J*b Dh(x .x.,ﬂl'SQ; } = l) k’/YI (64)
f be D Cxyeeex ) )

it follows that
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v o’ th) -
fingitazo,  wws fugie oo
n>iq-
)
2

(n)
f4x4°'°dsm32(z,.»-;“) 20, gin; (65)

" % . RkRol n! *n, n>
JJP,..Jr 3(()1r~...v y = Z‘l) 2. L= » 377 J
2 b:h (1'h)l(h‘h)¢ 2})1'

Thus the integral of the firgt non-vanishing term in the cluster

expansion (61) provides the complete normalization, N!/RN“)‘\,]j of
¢
? (“\1 ses Vi) . There are no contributions to the normalization

from higher orders. Moreover, to the extent that the ratio

j‘ be D (K ces Xk) " S(r f'a
M >
mk J‘ hlx ~Xh) 9 k/h ’

. . m
is independent of Ig , the quantities 3$ (L‘...’L"“) s 27YL,

vanish. For if we assume this ratio is independent of h, and

denote it by R(Y Y. ) we obtain directly from (62) that
’nl".,v\'l

I soe =
) ¢ . gk w! Reg, 9=,
o = R(xeenr I = (66)

r...V - Ty ] -
32 SO Liesrln) kzw (‘L’h)!(h-h)l
0, 9>n.
Finally, employing two relations from combinatorial analysis, we

are able to perform partial summations of the addends in {56l
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yin terms of the
n

resulting in a cogent expression for ?(:.

fundamental'invariants'sthe 9’, 's . We need only recall that

Z Fa,m) = % 3. Feg, )

=" Kq

(67)

Lr 'Yl Z ¥i
and
- fi?_‘"% Ty { M- . -j. ' a3 2 {
o (rmg). o 3 Y (N-g): . " (N-g-1). o)
HoB) ch-e )i . q-pt 41 N- =1 )
«'%F'i( l«)_,ﬁ.z). 470 (N34 (N- P01 (F-p
in ordz: to cktain for the sum of the first '41-) (HéN} terms
e e B TL N RSP
N‘a/. h._ 3"(7‘ .o or‘ )= Ngl -+ %‘1 h Nj (‘rl“‘)ch)
n k-~ (n)
ViR
*Xn)

(69)

he
- 3 NI .
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This "invariant-factor-cluster" expansion of the Yy-particle
spatial distribution function, unlike the corresponding AHT expansion
generated via (46), (47), is applicable to finite as well as to
infinite many-fermion systems. A reading of the following paper in
this series will leave no doubt that, order by order, the terms by
which the two expansions differ become negligible in the limit
N —¥ 00, Hence, in treating infinitely extended fermion systems,
the "invariant-factor-cluster'" and the AHT formalisms yield the same
spatial distribution functions order by order. However, this
statement cannot be made about the spatial integralfdx'...o(x.h
of the two expansions; the AHT expansion does not possess the
desivable feature that only its first non-vanishing term contributes

to the normalization of 53(“)

(r"“pr'\) L

It might be noted that relations analogous to (64) - (69) serve
to escablish completely analogous features of the FIY expansion for
the m-particle spatial distribution function. And we might also note,

(n ‘
explicitly, that the usual IY expansion for ?&. e 1) does not
~t ~n,
possess the very important feature of the FIY expansion that the
only contribution to the normalization comes from the first non-
vanishing term of the expansion.

The AHT expansion for the two-particle spatial distribution
function has been studied in detail by Aviles18 and by Hartogh and
Tolhoek,l9 A numerical comparison of AHT and 1Y expansions for

&9
? (r  Yq) was carried out by Woo in the framework of the
~Ld ~

1
liquid He3 problem.4



We conclude this section with a study of Dh’(_x‘...x“) for the
special case that ‘;r is given by (12) - (14). Since the
correlation function in the corresponding kL-particle wave functiong
{cf (27d)) is independent of orbital labels, the structure of
és to

e
U}?"\.'ﬂ.asogxh) simplifi
&

Tr/; @ X ,.-.x (XjerXh) s
D (‘agso )‘h) [j" ‘t(u Q(J) ‘Llf.. hSJ ] ZZ ﬂ’ 2(’1 Z")O?c Z(h).}

(2(1) ZG\)
(70)

“xplicitty, the independent-particle-factor may be written

‘ (2, s - LX) (71)
Qg = Aot Nyuopiey

where

[Al(l)ocoi(h)]tj - ¢Zc();;‘) ) ..’J‘ s l) see k . (72)

Noting that

* Kiee - * o,
q) 2((.),(:::'2([33 @‘ <::'f~'§‘)ch.) - "!ﬁ JetAzm..%‘jetAzu.-..z(h)

(73)

= ALzJe [AZU) zch)/\zw.uztw])

Eq. (70) becomes

42
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R

- .. " F ‘,x EXY) X ,e0aR
( vas X = ' ".fﬂv 1(1)] { det‘ ( ’l‘ h)}
(74)

the elements of the matrix

+
QZ(.,-«.Z(&) /\zm--.z(h) Ai(u,,.Z(h) (75)

being just

[Q?(u...z[n)]” 2 LP (.K 7)) (Pzg';() ) . (76)
7

To carry the analysis further we must address ourselves to the crucial

evaluation of the sum of determinants 2(2")“’2(h))d‘t Qz:u-».z(h).
Each element of Qz‘n...Z‘h) is the sum of thg same k

functions; the arguments of these functions vary from one element

to another and thus serve as the row-column indices. Successive

application of a well-known theorem governing the expansion of the

determinant of a matrix in which each row of the ‘it" column is the

as the sum of h

sum of two terms allows us to express o,e{'QZm... Al

determinants:
mdyu,) e a 50 x) (P‘“M
ekt gth) e e Jch)‘ e ﬁ
2 d et Qi""‘zi"’ 2, ‘Z;“"-Z. . .: .o .
g Qe T Gaoge < - B HER

an
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L
Notice, however, that any term with 1(;‘ :Jm, 5 ’fe , is zero,
for the determinant comprising that addend has two columns proportional.
This observation may be repeated as we take into account the sum over

the N"’/,[(N'h)lhf;' choices for the orbitals from among{(ﬁ)... Pﬂ}

with the result that

NN 9’;(,‘;‘# AN M '“P,;;;?)
5 4%&«1“. zch) 22 p : . (78)

wil A *
4«/ Leve" WUJ) J( j ® v00
?” cfjm Jen 0 (f “‘0 (%“h)

(k)

It now behooves us to reverse the procedure by which each Olefqz(fuzdg)
was written as the sum of k determinants and thus express the
right nand side of (78) as a single determinant. In this way we

arrive at

N N
21 W?(#.) ?:(lq) es ° % LP; (x,) %(xk‘

-t

Z det)Q?‘m...zck) 2 : i (79)
{9t -9(R) N
? z 'P; n(h) ? (‘ }) a0 - Z cF,_ ) (Pi(K”:

inl 1)
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and thus, returning to (74), conclude that

D (R .o X, ) = L%" 7};“"21..""‘013‘;)] \A/( (80)
RE™™ P §51 Yertepli-R> hx,...xk),

where

\/\/htx‘u.xhj = 1t . . (81)

and
N
Af*?lx‘j) = Z‘P(X:)fe(’y) . (82)

Thus the sum of products of determinants (70) has been reduced to
a single determinant derived from a matrix whose elements, defined
by (82), are easily shown to be invariant under the unitary

transformation (38).
4, Comparison of the Four Cluster Formalisms

The factor-cluster formalisms - besides being directly useful
for practical computation - provide a crutch for the extension of the

IY and AHT formalisms to finite systems. In previous derivations,

. . i
terms down from the leading terms in G'IY and gﬂHT by O(/N) have



46

not been tracked down. These terms may now be generated as follows
(we outline the procedure for the IY case): The final equations
in (33) and (48) along with (34) and (36) imply that we must have,

for all N ,

5‘3 )
Gy = 5', q?.i.;«.,)e” T e fom (83)

The equation. which serve to decompose theﬂm 1' in terms

HOR “l‘(p)
of the va ij'.‘Jtﬂji‘a,,cvh,}'éiilc)..fﬁ are easily inverted (as usual

oue looks for an expression for,e/rl Y‘“’“?‘m

L k‘z.’ ;{‘kmml“.w% C{Ju)mdtm}which yields a set of identities).

in terms of the

P
L.

tn

i, bop
A é@/m“" P’\(.‘u
the Ih(')’ Y2 leee $ and the )(1‘”...[“):{‘e(c,-..f(s)}c{ R(()"‘h(z)}o

Upon expanding the logarithms there results for G;Y an expansion

The are then decomposed in the 1Y fashion in terms of

in ths 1Y normalized cluster integrals which is valid for all WM,
Indeed, in this the IY case a linked cluster theorem may be proven:
GTY is the sum of all distinct x,,. 's and, with appropriate

coefficients, all possible linked products of these cluster integrals.

Corresponding to (83) we have, in the AHT case,
N,
Gawr * ;Z; wCn dn % ) (84)

and everything goes through in precisely the same way except that
there is no question of a linked cluster theorem here since linked

product is undefined in this formalism. Tt will be our task in the




following paper to carry out the pfogram sketched in this paragraph;
in particular we shall prove the linked cluster theorem for the IY
expansion and contrive a rule for determining the aforementioned
appropriate coefficients.

So, finally, one has four cluster expansions for {S) , all valid
for finite N as well as in the many-body limit. The "invariant"
expansions (AHT and FAHT) clearly differ from the '"non-invariant"
expansions (IY and FIY) order by order as well as term by term. IY
and FIY expansions, and on the other hand AHT and FAHT expansions,
coincide order by order but not, of course, term'by term.

The question naturally arises: Which is the best of these four
formalisms to use in a given calculation? Assuredly, the answer to
this question will depend on the details of the problem at hand.
Nevertheless, some very general observations can be made, based on
the fact that the IY (AHT) expansion for £§ > may be derived from
the FIY (FAHT) expansion by employing the procedure just described.
As a result of the logarithmic expansions, there are, "in general"
(i.e., there exist'épecial exceptions as we shall see in a moment),
an infinite number of non-negligible terms in each order of the 1IY
and AHT expansions, even for finite N . On the other hand, the
factorized expansions are characterized by a finite number of terms
in each order, therefore a finite number of terms for finite N
(In fact there is just one term of each order in the FIYv case as
well as in the FAHT case if we obey our convention and regard each

N
summand of §Eh=l as a single term.) Surely the only effect of the
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extra expansions involved in the transition FIY g IY or FAI'Z g AHT
is to lessen the rate of convergence of IY relative to FIY, AHT
relative to FAHT. Clearly the order by order identity of IY and

7y {AHT and FAHT) expansions is of no practical significance if a

civen order in the 1Y (AHT) expansion contains an infinite number

Fo finite systems we may remove the qualification 'in general
i the preceding paragraph. We expect a preference of FIY over IY,
FAHT owver 4+, But there is as yet no numerical evidence favoring
vve cxpansicn over any of the others, even in a single particular
case, since there has only been one cluster-method calculation on a
Sivics 3yscem, toat one using the 1Y procedure in the approximate
evaiuation of <M> for the 016 nuc leus assuming a Jastrow trial
WiV function?5’26

Let us aow consider extended systems with short range forces.
we neep N finite but suppose it to be large enough that
contributionsg (7(N°) may be discarded compared with contributions

(j( N) . Then only a finite number of terms survive in a given

order of the AHT expansion. Consequently the order by order
identity of AHT and FAHT does, in this case, have practical
significance. On the other hand the 1Y expansion does not
necessarily so collapse. Let there exist for the observable f; in

question an irreducible resolution (18) - (19) such that, for some

a?S(“'°1) is negligible for all configurations except those in

which particles 4“)“.4(9)’{J“’-.‘J(f’gci'”'?} , are within a volume
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f)ﬁ%)fl , and is not identically zero. (The Hamiltonian H fits this
rn)

requirement; the operator (’!.““I’.m: r"/_“x;) whose expectation value
yields the YA\ -particle spatial distribution function does not.) If
non-localized orbitals (with plane-wave spatial factors) are used,
then all except a finite number of terms disappear from each order of
the 1Y expansion. But if localized orbitals are used, there is no
gsuch simplification and there are still an infinite number of terms

in each order. Proof of these statements rests upon the detailed
results of the next paper; however, their plausibility may be enhanced
at this point by a consideration of the following two terms - typical

addends of the infinite sequences in question - contributing respectively

to ?_ G and 3— 95'."'

x5

& feg
J 0

WIS

[ J

2
L0

LY
Thus in practical Y\-body cluster calculations of < H D for

extended systems with short range forces it makes no difference whether

we use the AHT or the FAHT expansion. For quantum liquids there

will be no difference in practical IY and FIY calculations of this

nature. For quantum solids there will be: indeed the numerical work

of Nosanow and his collaborator527 has revealed the expected superiority

of the FIY formalism over the IY formalism in a variationsal
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calculation of the cohesive energy of solid He3 through three-body
clusters assuming a Jastrow trial wave function.

There exists one last piece of information bearing on the
comparison of the four formalisms in practical application. Through
third order, 1Y and AHT results for the two-particle spatial
distribution function in liquid He3 assuming a Bose correlation

faccor are hardly distinguishable.m’23

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the helpful discussions we
had with Professor E. Feenberg. One of the authors (J.W.C.) would
iike to thank Professor Aage Bohr for extending to him the hospitality
of the Niels Bohr Institute? where part of this work was carried out.
The other author (P.W.) gratefully acknowledges the assistance of

the Theoretical Chemistry Institute where much of this work was done.




APPENDIX

The approximate evaluation of expectation values via the cluster
expansion techniques of this paper may be carried through with any
wave functicn once a method of defining the m-particle wave functious
has been proposed. Among the possibilities considered in Section 1
is the exact N-particle wave function YW , written in the manner

~~
C s o
of Sinanoglu:

P = Qo) f“ P+ 25 T Py "")U"‘r) +

7&&»)“(59&’) + .00 ____'U(X "'x“ ]

Ji?rtz '*F e, e Yy

This appendlx is devoted to an examination of Sinanoglu's expression

(A1)

for lym with the intention of illuminating its structure and that
P
of the corresponding y\-particle wave functions.
We note that in the language of a configuration interaction (CI)

treatment
m
x, «se X

ge”” ”‘:“p

X%‘K“*m cm"-‘-’lz--.t,... ™ em Q(Z) [\Pa{,x,) oee ¢x?(:1)]
(A2)

where in practice the coefficients must be determined by a perturbative

-
-

or variational procedure but are formally given by

C . .
'Yn"o,. xe.c X"”m,j m.« 1‘“..'7”

J‘”... 'm,, = (A3)

- S e faen oo B B o] *wg«p .



In (A2) the sum is over all combinations of q'

from the set {Yq' ..,’n—l'l}

function 0 .
Mo M)

form.

integrations which occur, we find rhatu

Yz

»mj!”m.‘vnjuz;

Tax ‘
f—.‘?)t‘m "xz‘:dt‘ ‘

The integrand wmay be simplified according to

For

twe determinants found in (A4) can be written as a single determinant,

l“"”-

det By Wi ™
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the following scheme:

99

» given set of z orbital labels )M .., )(L the product of

x!y o (Xg) .40 * x?
i 9’,":‘I‘ ’ CPV’],J')

(KN)‘FX("'L, ten (.P C‘N)

orbitals excluded
The expression for the correlation
may be recast into a compact, but revealing,

Upon inserting (A3) into (A2) and interchanging the sums and

written

+ 0

)
’
]
]

52
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that is, a determinant in which the Stﬂ! row of the fﬁk column -

» ’ . . : l
i i - . riven b
occupied in ?L‘('A'...;(N) by Cf?»}*.s\ is new given by

2(])'7 )4&(3(2) i£g gm#mé{;m J(«;}

Lol

- .“1’ (AS)
%] "
Grgs? € gy

Moreover, by a procedure like that which leads from (73) tc (79),

(1]

the sum of such determinants may be reduced tc a siugle determinant

so that

Z-c d"t @)‘ xz :

e g X 4 " Tgen WY

[ *x ., .z , ¥ V
Pah KZ;J P )soxa,..oﬁgxm,)%miu on e i)

.k " .. > oue *:@,’; »m y}"
,gJ"?QJ jgii@ﬁﬂKCx}Qj%éxﬂ §;§;;§%H! ) CK qy ’i)

(AB)



in
£

Each of the sums appearing in (A6) is over all orbital labels

9'-¢{m.--'m~§.

basis in the one-particle Hilbert space, we can write

Since the single-particle states form an orthcnormal

*I P _y-ll,.k,.l.o,.‘-
Z_: (P&()() (PX(V‘) : JCK)K) T :Lx_; YM»L&J fmﬁxﬂ o

]

AT

Upon substituting this expression into (A6) we discover that, in
%«
'] . ; d *,
addition to g(%,)‘);-‘y'only the terms involving {{Jm;*) ?mi ) with
I € {10' see 7(1’)} give rise to non-vanishing contributions

when the resulting determinant is expanded. Thus, we define
it
) (xs’..x*) S("ss"f) - 3—4 o, Xs) o (x2) /A8)
—Jm . J(i’ i’l JCG) J(«z)

i
Yand arrive at the result

U~ (Xp--a%q) =
WJ" }tp

‘( ¢
ol ...?(x,, y)eoe gﬂ,x%y...p (;g)
1 #J" ,m' b i U ;Q"J"’ Y .
Vaig e - : . : Jod-7y)
¥ * P o aa
| N \ tf (N‘..ID(XN)X)... 'p(‘ﬂ’x,)ooow (KN)
v J“’ J‘l’ J(n J (p M

/% jﬁ.,dxi{cp_:.(&:) aee (xﬁm) Ax) e ép(&,q‘”xq' cea “‘w}%& -x,)‘

J(n J( '] Jl: ”’"@»
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The second expression, in which the determinant has been replaced by

a simple product, is obtained by recognizing that q)yg‘:--rx:') must be

antisymmetric under the interchange of any two partigle labels.
Although we have assumed glw(a;-..,‘;, to be the exact X particle

wave fubction, the ahove derivation of (A9) may be bypassed and this

formula viewed as a starting point for the analysis of trial wave func:tions.5

Thus given a trial wave function qlw (xl‘,,. xy) (which may or may not

turn out to be the sought-for eigenfunction) the corresponding correlation

functions U

f i " Y -particl
Sy ("“‘mj@) rom which to construct the " ¥y)-particle wave

functions' may be found via (A9). If, as in accordance with (27b), we

define
o n n ~t
ii‘”..xh) = _?_!_ Tr (%) + @ X‘,‘) %(

{'})MQ{‘}.MV.,&M) N1 QCH)[ §31 ‘WJo) PZ iIZ"P‘&J(U "b‘;g

J

' L AR
+ 1 z N ¢x ) "r»af * e AL,
Vvai peq itpl 3 .f‘l” 49 ("o
then the insertion of A(9) for the U“' i yields the very
M TN 2p)

natural expression

‘V(;( 200 Xm - N ¢ i} .
‘WJ..'.-«WJW)) : f.;"*,. [{L‘S(*;‘;,,x;) (PW o 'q]a XY
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We have developed an explicit means of constructing the
T -particle wave function from a given form for q}wfx‘---x,.,). Certainly
~
our prescription is not unique. Indeed, since completely summing any
cluster expansion for {87 leaves a final expression involving only
the N-body wave function q/mtx,... ®n) , we must admit that from a
A
formal standpoint ng“.,.qmém) (withyy < N ) may be defined quite
arbitrarily. Nevertheless, we anticipate that the method outlined
kere, resulting in the intuitively natural form for q)m von

p 0

evidenced iu (AlU), will prove most advantageous. Moreover, when the

J’ on?S

problem at hand allows the particles to be divided into subgroups such
that the members of one subgroup are only weakly correlated with those
of aaother, W( Kyenn Xy ) as defined by (A10) approximates the

b IR RN G E R
probability amplitude for such a subgroup of Y\ particles, these
particles occupying orbitals (Pwa,_.g yeoo CP'”’j(m in the independent-
particle picture. Finally, we observe that the m-particle wave functions
Gefined in (27c¢) and (27d) are not equivalent to the function (A10)

but involve the further step of replacing some of the correlation

functions within the integrand of (A10) by unity.
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